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Foreword
! This presentation is a part of a set of presentations about 

server architectures. 
Presentations are based upon the following book:

Serveurs Architectures: Multiprocessors, Clusters, 
Parallel Systems, Web Servers, Storage Solutions

René J. Chevance
Digital Press December 2004 ISBN 1-55558-333-4

http://books.elsevier.com/

This book has been derived from the following one:

Serveurs multiprocesseurs, clusters et 
architectures parallèles

René J. Chevance
Eyrolles Avril 2000 ISBN 2-212-09114-1

http://www.eyrolles.com/

The English version integrates a lot of updates as well as a 
new chapter on Storage Solutions.

Contact: www.chevance.com rjc@chevance.com
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Organization of the Presentations
! Introduction
! Processors and Memories
! Input/Output
! Evolution of Software Technologies
! Symmetric Multi-Processors
! Cluster and Massively Parallel Machines
! Data Storage
! System Performance and Estimation Techniques
" DBMS and Server Architectures (this presentation)

# Introduction
# Architecture Models
# Problems of Parallel DBMS
# Architecture of Parallel DBMS
# Data Partitioning
# IBM DB2 UDB Enterprise
# Oracle Real Application Cluster
# Summary: DBMS Architecture Comparisons

! High Availability Systems
! Selection Criteria and Total Cost of Possession
! Conclusion and Prospects
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introduction
! Searching for performance through the 

exploitation in parallel of system resources
! An ideal parallel system must have two 

properties (DeWitt/Gray [DEW92]):
$ Linear Speedup

% N times more resources make it possible to treat a 
given task in N times less than the reference system 
(typical case of DSS)

$ Linear Scaleup
% N times more resources make it possible to deal with 

an N times larger problem in the same time as the 
reference system (typical case of OLTP: updating a N 
times larger database by a N times larger number of 
users)
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Speedup and Scaleup

Speedup

100% TaskInitial System

Time

50% Task

50% Task
Parallel
Systems

50% Time

Note: For most OLTP applications, the necessary synchronization makes impossible
to obtain linear Scaleup or Speedup

Scaleup

200% Task

100% Time

100% Time

Parallel
Systems
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A Quick Look at RDBMS Market

! Worldwide RDBMS Market Shares 
(Source IDC March 2005 – 2004 figures are 
preliminary)
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2002 $12,63B
2003 $13,39B
2004 $15B
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Architecture Models

! Architecture options in system-disk 
interconnect

Share Everything
(typical SMP)

CPU Mem

Share Nothing
(some clusters

and
typical MPP)

Interconnect network

CPU

Mem

CPU

Mem

Node 1 Node N

Shared Disk
(some clusters)

CPU

Mem

Interconnect network

Node 1 Node N

CPU

Mem

SAN
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Architecture Models(2)
! Illustration of the differences between the 

models

Customers
(Processes)

Agents at Service 
Counters
Processors/systems)

Information
(Database)

Share Everything Model Shared Disks Model Share Nothing Model

• Shared Disks relies on the assumption that the node-to-disk interconnect is fast enough to 
avoid the need to distribute data

• Share Nothing relies on the assumption that the data is distributed so as to optimize I/O 
bandwidth and data handling capacity.
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Architecture Models(3)
! Compared Characteristics of the various models

Share Everything Shared Disks Share Nothing 
Simplicity for both inter-request and intra-
request parallelism

Good availability Good availability

Good use of resources Good scalability (100 or more processors) Extremely good scalability (several hundred proces sors)

Natural load-balancing Low cost because of re-use of standard 
components

Low cost because of re-use of standard components

Efficient interprocess com munication through 
coher ent shared memory

Good load balancing (data which is heavily shared 
can be replicated) 

Solution rapidly becoming commoditized at 
the low end 

Difficult to ensure system availability Interaction between nodes needed to synchronize 
data updates

Difficulties in load-balanc ing

Limited scalability (upper limit of a few tens 
of pro cessors)

Saturation of the intercon nect network because of 
node-disk traffic

Difficult to administer and optimize because of data 
partitioning

Cost of maintaining coher ence across multiple 
copies of the data (if replication is used) especially 
if there are frequent updates.

System performance strongly dependent on inter connect 
characteristics

Cost of parallelizing requests, even for simple requests

Cost of maintaining coher ence across multiple copies of 
the data (if replication is used) especially if there are 
frequent updates 

Advantages

Disadvantages
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Architecture Models(4)

! Architectural choices supported by the 
principal DBMSes

Note: Informix has been bought by IBM in 2001

Model of architecture Share 
Everything 

(SMP) 

Shared Disks 
(some clusters) 

Share 
Nothing(some 

clusters and MPP) 
IBM DB2 IBM DB2 for OS/390 

and z/OS
IBM DB2 for Linux, Unix 
and Windows

Informix Oracle Real 
Application 
Cluster

Informix

Microsoft SQL 
Server

Microsoft SQL Server

Oracle Teradata (NCR)
Teradata (NCR)

Sybase

DBMS
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Architecture Models(5)
! Additional comments

$ In Share Nothing, alternate connections must be provided so 
that other nodes can take over in case of node failure. Such 
connections are not used in the course of normal operation

$ Shared Disks and Shared Nothing architectures depend on 
both the architecture of the node-disk interconnect and the 
operating system. Some operating systems simply do not 
support the concept of Shared Disks. If the OS imposes an 
undesired model, it is possible to layer the desired 
architecture on top by partitioning (to convert Shared Disks
to Shared Nothing) or by using Remote I/O (to convert 
Shared Nothing to Shared Disks), although the latter brings 
substantial inefficiencies

$ Given the introduction of SAN storage networks, the 
distinction between Shared Nothing and Shared Disks 
becomes strictly functional, since every node connected to 
the SAN potentially has access to all the storage resources 
on the network. Thus, any distinction is made at the level of 
the OS
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Problems of Parallel DBMS
! Parallel versus Distributed DBMS

$ A parallel DBMS seeks to make maximum use of the resources of a 
system through the use of parallelism, while a distributed DBMS aims to 
make a collection of databases (whether homogeneous or not) supported 
by different systems look like a single coherent database.

$ Some DBMS versions said to be tuned for parallel architectures are 
simply distributed databases, in which multiples instances of the DBMS 
execute on multiple nodes and cooperate to provide the effect of a single 
database

! There are two possible parallelization approaches 
[MOH94]:
$ Processing Parallelism. A request is broken up into atomic requests 

which are executed in parallel
$ Data Parallelism. The data is partitioned into subsets, which are 

processed concurrently

! Real life facts:
$ Processing parallelism is limited by the number of operators involved in 

the processing of requests and the dependencies between operators
$ Data parallelism offers more possibilities (partitioning a relation into 

several sub-tables) 
$ It is possible to combine both approaches through the parallel execution 

of requests against several sub-tables
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Saturation Situations
! There two typical cases of saturation of 

system resources by a DBMS 
$ Saturation of processing resources. This situation 

is called CPU bound, since system performance is 
limited by processors

$ Saturation of Input/Output resources. This 
situation is called I/O bound, since system 
performance is limited by I/Os 

! Taking into account the potential of technologies 
(i.e. CPU performance is growing more quickly 
than I/O performance), the « CPU bound » 
situation is preferable
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Architecture of Parallel DBMS
! There are two possible form of parallelism 

in a server:
$ Inter-request parallelism
$ Intra-request parallelism

! Illustration of inter-request parallelism

. . . .

Dispatcher

° ° °
Server

Processes

Database
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Architecture of Parallel DBMS(2)

! Intra-request parallelism illustrating 
partitioning a database [RUD98]

Sequential Execution

Table 1

Table 2

time

Step 1
Scan
4 min.

Step 2
Join

4 min.

Step 3
Sort

4 min.

Total time
12 min.

Data Partitioning

Total time
3 min.

Step 1
Scan
1 min.

Step 2
Join

1 min.

Step 3
Sort

1min.

Table 1

Table 2

Partition the data across
several systems
(here, 4 systems) 
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Architecture of Parallel DBMS(3)
! Combining data partitioning and pipelined 

execution

Table 1

Table 2

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Time

time = 3 min

Completion
of the first

request

time = 1 min time = 2 min time = 4 min

Completion
of the second

request 

time = 5 min

Completion 
of the third 

request
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Architecture of Parallel DBMS(4)

! Functional Models in a Share Nothing 
Architecture

A...EA...E F...JF...J K...NK...N O...SO...S T...ZT...Z

Execution 
of the request

Data access demand Data

a) Data Shipping

Function execution demand

A...EA...E F...JF...J K...NK...N O...SO...S T...ZT...Z

Function
Execution

Execution of
the request

(partial)

Results

b) Function Shipping
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Data Partitioning
! Implied by Share Nothing approach
! May be used in a Share Disk approach to improve the performance 

through judicious directing of requests to nodes (creating an 
affinity between node and data thus improving the effects of data 
caching)

! Two ways of data partitioning (based upon an attribute – a column 
of a tuple- called partitioning key):
$ Vertical partitioning
$ Horizontal partitioning

$ Vertical partitioning can only be done with application design in mind
$ When a transaction updates data in more than one partition, the DBMS 

must implement a two-phase commit between its concerned instances

Table

System 2System 1

Table

System 1

System 2

Vertical Partitioning Horizontal Partitioning
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Data Partitioning(2)
! Examples of methods of data partitioning

Round Robin
Each tuple is placed into the 

next partition in sequence

1
2
3
4
5

Table

Domain
of values

Domain
Tuples are partitioned according
to the value domains of their keys

Hashing
An algorithm applied to the key 

determines partition number
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IBM DB2 UDB Enterprise Extended Edition
! A version with the Data Partioning Option is intended for 

loosely coupled systems operating under Linux, Unix or 
Windows (there are equivalent versions for zOS and iSeries). 
This version (hereafter called DB2) is based on a share 
nothing approach and function shipping

! Data partitioning in DB2

Column 1 (Partitioning key) Column 2 Column 3

xxxxx yyyyy zzzz

Function result 0 1 2 3 4 5 6 7 8 9 10 11
Assigned node 1 2 3 4 5 6 1 2 3 4 5 6

. . . .

. . . .

Hash Function

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
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IBM DB2(2)
! Function Shipping in DB2

Node 1 Node 2 Node 3

E E E

C

E E E EEE

Client applications

C Coordinator Task E Slave Task
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IBM DB2(3)
! Join Strategies in DB2

Coordinator
Task

Slave
Tasks

Join

Scan
Scan

Table 1

Table 2

Local Join

Slave
Tasks 1

Scan

Table 1 Table 2

Scan

Join

Directed 
or

Diffused

Directed or Diffuse Join

Coordinator
Task

Slave
Tasks 2

Scan Scan

Table 1 Table 2

Join

Distributed Join

Scan

Coordinator
Task

Slave
Tasks 3

Slave
Tasks 2

Slave
Tasks 1
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IBM DB2(4)

! DB2 provides a number of facilities such 
as:

$ Administration tools
$ A single system image (as far as the 

database is concerned)
$ A database loading utility which can operate 

in parallel
$ Parallel backup and restore (in parallel with 

production use)
$ Ability to restructure the database 

concurrently with production use
$ High-availability functionality
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Oracle Real Application Cluster
! Oracle Real Application Cluster (RAC for 

short) is based upon the Shared Disks 
philosophy

! Illustration of Oracle terminology
Single instance Multiple instances/Multiple DB’s

Exclusive Mode

Oracle
instance

Open DBNode Node

Oracle
instance

Open DB

Oracle
instance

Open DB

ORACLE Parallel Server

Oracle
instance

Oracle
instance

Node  1 Node 2

Open DB

Shared Mode
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Oracle Real Application Cluster(2)
! General Structure of an Oracle Instance

Database
Cache

System Global Area (SGA)

Dedicated 
server

Redo
Log

User

Shared area

Shared
SQL

Zones

User session
and cursor 

state for MTS

PGA
Stack
User

session
Current

state

PGA

StackDispatcher

Multithreaded Server

Background process

UserUser

PGA

Stack
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Oracle Real Application Cluster(3)
! Structure of a Multithreaded Oracle 

Instance

Redo
Log

Request
queue

Response
Queue

System Global Area

Dispatcher Dispatcher LSNR
Dedicated

Server

User

Database
cache

Shared
Area

Background process

Shared
server

User User User User User
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Oracle Real Application Cluster(4)
! Oracle Background Processes

System Global Area (SGA)

S000
Shared 
Server 

process

reco pmon smon

ckpt

dbwr lgwr

arch

Database files

Redo Log files

lck0

Backup/archiving 
peripherals

User process

d000

Database
Cache

Redo
log

Control files

The following pair of techniques are 
used to improve transaction 
processing performance:

•• Fast Commit/Deferred Write. During 
a transaction commit, Oracle only 
updates the log. The database proper 
is updated only when modified 
blocks are written back to disk.

•• Group Commit. Log updates for 
several transactions are gathered up 
so that recording several commits 
requires just one log update. In other 
words, commit is delayed until 
enough have been encountered, or 
until a specified time quantum has 
expired; the log file is then updated 
with just one I/O operation.
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Oracle Real Application Cluster(5)
! Architecture of RAC (Oracle 9i)

Instance A Instance B

Shared 
Servers

SGA

pmon

smon

DLM CGS

Parallel Server API

CM I/O IPC

Shared 
Servers

SGA

pmon

smon

DLMCGS

Parallel Server API

CMI/OIPC

lgwr dbwrarch lgwrdbwr arch

Node 1 Node 2

Management of the parallel environment is provided by the two principal components of RAC: PCM 
(Parallel Cache Management) and CGS (Cluster Group Services). 
PCM uses DLM (Distributed Lock Management) to coordinate access to resources required by the 
instances; it is also used to coordinate access to shared resources such as the data dictionaries 
(metadata), journals and so on. CGS interworks with the Cluster Manager to supervise cluster state.
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Oracle Real Application Cluster(6)
! From a conceptual point of view, RAC implements a cache 

coherence protocol. The basic idea behind the protocol is 
that only one instance at a time can modify a storage block. 
Thus, a block being modified by one instance and needed 
by another instance will be communicated to the second 
instance . In RAC, the name ping is used to denote this 
operation.

! A lock protects one or more storage blocks. Intuitively, the 
more blocks protected by one lock, the more likely it is that 
a request for a block will require a ping. Since this 
operation means that all the modified blocks covered by 
the lock will be communicated to the requesting instance -
and not just the wanted block - it is said to result in a false 
ping. Thus, a balance must be struck between the cost of 
managing many locks and the cost of having too many 
false pings.

! The optimization of RAC was based upon the idea of 
reducing the cost of managing cache coherency (the term 
cache synchronization is also used). This is the key 
objective of the Cache Fusion concept.
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Oracle Real Application Cluster(7)
! Cache Fusion Concept

Database
Logs

Instance A Instance B

lck0

DLM

Shared
Servers

lgwr

lck0

DLM

dbwr

Shared
Servers

SGA SGACache Fusion

dbwr

Logs

lgwr

Node 1 Node 2
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Oracle Real Application Cluster(8)

! Four cases are handled to reduce overall ping cost:
$ Read/Read. Instance A wishes to read, on behalf of a 

user, a storage block recently read by Instance B and 
which is in B’s SGA;

$ Read/Write. Instance A wishes to read, on behalf of a 
user, a storage block recently written by Instance B and 
which is in B’s SGA;

$ Write/Read. Instance A wishes to write, on behalf of a 
user, a storage block recently read by Instance B and 
which is in B’s SGA;

$ Write/Write. Instance A wishes to write, on behalf of a 
user, a storage block recently written by Instance B and 
which is in B’s SGA.
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Oracle Real Application Cluster(9)
! The Read/Read case does not require any coordination 

between the instances - instance A may simply read the 
storage blocks from disk into its own SGA, from B’s SGA 
(i.e. using the interconnection network) or from a disk read 
operation (the choice depends on the respective 
performance of the interconnect and the disk read).

! In the Read/Write and Write/Write cases, a coordination 
between the instances is necessary to ensure consistency 
(read/write) or integrity (write/write). In either of these 
situations, the current possessor of an up to date version 
of the data sends it to the requester over the interconnect 
network. This save the two disk I/Os implied by a ping. RAC 
implements appropriate redundancies to ensure 
recoverability in the event of a failure.

! In the case of Write/Read, the instance that last read the 
data block (and has a copy in its SGA) sends it over the 
interconnect network to the instance that wants to modify 
the data. This avoids a read access to the disk.
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Oracle Real Application Cluster(10)
! RAC Locking Concepts

$ Two types of locks:
% Non-PCM Locks (or nonparallel locks): Transaction Locks, 

Table Locks, System Change Number, Library Cache Locks, 
Data Dictionary Cache Locks, Data Base Mount Lock

% Locks used to manage the parallel cache (or parallel locks)

Parallel lock space

Blockp Status tuple
tuple

Blockq Status tuple
tuple

Blockr Status tuple
tuple

Instancei Instancej

Blocks Status tuple
tuple

Non-parallel lock space

Transactionk Transactionm
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Oracle Real Application Cluster(11)
! RAC Recovery Logic

1. Several OPS instances are active on a number of 
nodes

2. A node fails, its failure is detected, and connections 
between the clients of that node and its instance are 
migrated to instances on surviving nodes

3. The Cluster Manager (CM) and the Cluster Group 
Services (CGS) reconfigure themselves to eliminate 
the failing node. During this process, new service 
requests from clients are suspended, as are requests 
in the process of being handled (until the recovery is 
completed).

4. The lock database is reconstituted, with the database 
and the locks associated with resources being 
redistributed to the surviving nodes.

5. Cache recovery and use exploitation of the logs are 
done 

6. Access to the database is once more permitted while 
recovery continues with Fast-Start Rollback.
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DBMS Architecture Comparisons

High

Low

No updates Many updatesType of operations
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Departmental 
Applications

Transaction processing
with partitioning

OLTP -
Transaction processing 
with random changes to 

a large database

Good scalabilityGood scalability

Scalability not Scalability not 
guaranteedguaranteed
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DBMS Architecture Comparisons(2)

. Intra-request 
parallelism provides 
speedup 
. Requests may easily 
be optimized

. Limited maximum 
number of processors 

. Limited maximum 
number of processors

. Not failure-resistant . Not failure-resistant
. Intra-request 
parallelism provides 
speedup

. Intra-request 
parallelism provides 
speedup 

. Intra-request 
parallelism provides 
scaleup 

. Data partitioning not 
needed

. Data partitioning not 
needed

. Data partition ing not 
needed

. Disk interconnect is a 
potential bottleneck 

. Disk interconnect is a 
potential bottleneck 

. Data partitioning 
needed for performance 
increase

. Data partitioning 
needed for 
performance increase

. Difficult to optimize 
requests

. Difficult to optimize 
requests

Advantages
. Intra-request 
parallelism provides 
speedup

. Inter-request 
parallelism provides 
scaleup

. Efficiently of 
transaction processing

. Inter-request 
parallelism provides 
scaleup 

. Data partition ing 
needed for performance 
increase

. Partitioning makes 
applications difficult to 
design

. Difficult to optimize 
requests

. Controlling data 
distribution makes 
database 
administration difficult
. Difficult to optimize 
requests

. Partitioning makes 
applications difficult to 
design

Disadvantages 

Share Nothing

Shared Disks

Departmental 
Transaction 
Processing

. Difficult to optimize 
requests

. Efficiency of 
transaction processing 

Advantages 

. Disk interconnect is a 
potential bottleneck 

. Partitioning makes 
applications difficult to 
design

Disadvantages 

Disadvantages 
. Limited maxi mum 
number of processors 

Not applicable

Share Everything

Transaction 
Processing 

Advantages 

. Inter-request 
parallelism provides 
scale up

Not applicable . Efficiency (scale up) 

Decision Support Partitioned 
Transaction 
Processing
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