
Page 1

Server Architectures:Server Architectures:Server Architectures:Server Architectures:
DBMS DBMS DBMS DBMS andandandand ServerServerServerServer

ArchitecturesArchitecturesArchitecturesArchitectures
René J. ChevanceJanuary 2005

Page 2

© RJ Chevance

Foreword
! This presentation is a part of a set of presentations about

server architectures.
Presentations are based upon the following book:

Serveurs Architectures: Multiprocessors, Clusters,
Parallel Systems, Web Servers, Storage Solutions

René J. Chevance
Digital Press December 2004 ISBN 1-55558-333-4

http://books.elsevier.com/

This book has been derived from the following one:

Serveurs multiprocesseurs, clusters et
architectures parallèles

René J. Chevance
Eyrolles Avril 2000 ISBN 2-212-09114-1

http://www.eyrolles.com/

The English version integrates a lot of updates as well as a
new chapter on Storage Solutions.

Contact: www.chevance.com rjc@chevance.com

Page 2

Page 3

© RJ Chevance

Organization of the Presentations
! Introduction
! Processors and Memories
! Input/Output
! Evolution of Software Technologies
! Symmetric Multi-Processors
! Cluster and Massively Parallel Machines
! Data Storage
! System Performance and Estimation Techniques
" DBMS and Server Architectures (this presentation)

Introduction
Architecture Models
Problems of Parallel DBMS
Architecture of Parallel DBMS
Data Partitioning
IBM DB2 UDB Enterprise
Oracle Real Application Cluster
Summary: DBMS Architecture Comparisons

! High Availability Systems
! Selection Criteria and Total Cost of Possession
! Conclusion and Prospects

Page 4

© RJ Chevance

introduction
! Searching for performance through the

exploitation in parallel of system resources
! An ideal parallel system must have two

properties (DeWitt/Gray [DEW92]):
$ Linear Speedup

% N times more resources make it possible to treat a
given task in N times less than the reference system
(typical case of DSS)

$ Linear Scaleup
% N times more resources make it possible to deal with

an N times larger problem in the same time as the
reference system (typical case of OLTP: updating a N
times larger database by a N times larger number of
users)

Page 3

Page 5

© RJ Chevance

Speedup and Scaleup

Speedup

100% TaskInitial System

Time

50% Task

50% Task
Parallel
Systems

50% Time

Note: For most OLTP applications, the necessary synchronization makes impossible
to obtain linear Scaleup or Speedup

Scaleup

200% Task

100% Time

100% Time

Parallel
Systems

Page 6

© RJ Chevance

A Quick Look at RDBMS Market

! Worldwide RDBMS Market Shares
(Source IDC March 2005 – 2004 figures are
preliminary)

O
ra

cl
e

IB
M

M
ic

ro
so

ft

Sy
ba

se

N
C

R
 T

er
ad

at
a

2002 $12,63B
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%

Worldwide RDBMS Market
(IDC March 2005)

2002 $12,63B
2003 $13,39B
2004 $15B

Page 4

Page 7

© RJ Chevance

Architecture Models

! Architecture options in system-disk
interconnect

Share Everything
(typical SMP)

CPU Mem

Share Nothing
(some clusters

and
typical MPP)

Interconnect network

CPU

Mem

CPU

Mem

Node 1 Node N

Shared Disk
(some clusters)

CPU

Mem

Interconnect network

Node 1 Node N

CPU

Mem

SAN

Page 8

© RJ Chevance

Architecture Models(2)
! Illustration of the differences between the

models

Customers
(Processes)

Agents at Service
Counters
Processors/systems)

Information
(Database)

Share Everything Model Shared Disks Model Share Nothing Model

• Shared Disks relies on the assumption that the node-to-disk interconnect is fast enough to
avoid the need to distribute data

• Share Nothing relies on the assumption that the data is distributed so as to optimize I/O
bandwidth and data handling capacity.

Page 5

Page 9

© RJ Chevance

Architecture Models(3)
! Compared Characteristics of the various models

Share Everything Shared Disks Share Nothing
Simplicity for both inter-request and intra-
request parallelism

Good availability Good availability

Good use of resources Good scalability (100 or more processors) Extremely good scalability (several hundred proces sors)

Natural load-balancing Low cost because of re-use of standard
components

Low cost because of re-use of standard components

Efficient interprocess com munication through
coher ent shared memory

Good load balancing (data which is heavily shared
can be replicated)

Solution rapidly becoming commoditized at
the low end

Difficult to ensure system availability Interaction between nodes needed to synchronize
data updates

Difficulties in load-balanc ing

Limited scalability (upper limit of a few tens
of pro cessors)

Saturation of the intercon nect network because of
node-disk traffic

Difficult to administer and optimize because of data
partitioning

Cost of maintaining coher ence across multiple
copies of the data (if replication is used) especially
if there are frequent updates.

System performance strongly dependent on inter connect
characteristics

Cost of parallelizing requests, even for simple requests

Cost of maintaining coher ence across multiple copies of
the data (if replication is used) especially if there are
frequent updates

Advantages

Disadvantages

Page 10

© RJ Chevance

Architecture Models(4)

! Architectural choices supported by the
principal DBMSes

Note: Informix has been bought by IBM in 2001

Model of architecture Share
Everything

(SMP)

Shared Disks
(some clusters)

Share
Nothing(some

clusters and MPP)
IBM DB2 IBM DB2 for OS/390

and z/OS
IBM DB2 for Linux, Unix
and Windows

Informix Oracle Real
Application
Cluster

Informix

Microsoft SQL
Server

Microsoft SQL Server

Oracle Teradata (NCR)
Teradata (NCR)

Sybase

DBMS

Page 6

Page 11

© RJ Chevance

Architecture Models(5)
! Additional comments

$ In Share Nothing, alternate connections must be provided so
that other nodes can take over in case of node failure. Such
connections are not used in the course of normal operation

$ Shared Disks and Shared Nothing architectures depend on
both the architecture of the node-disk interconnect and the
operating system. Some operating systems simply do not
support the concept of Shared Disks. If the OS imposes an
undesired model, it is possible to layer the desired
architecture on top by partitioning (to convert Shared Disks
to Shared Nothing) or by using Remote I/O (to convert
Shared Nothing to Shared Disks), although the latter brings
substantial inefficiencies

$ Given the introduction of SAN storage networks, the
distinction between Shared Nothing and Shared Disks
becomes strictly functional, since every node connected to
the SAN potentially has access to all the storage resources
on the network. Thus, any distinction is made at the level of
the OS

Page 12

© RJ Chevance

Problems of Parallel DBMS
! Parallel versus Distributed DBMS

$ A parallel DBMS seeks to make maximum use of the resources of a
system through the use of parallelism, while a distributed DBMS aims to
make a collection of databases (whether homogeneous or not) supported
by different systems look like a single coherent database.

$ Some DBMS versions said to be tuned for parallel architectures are
simply distributed databases, in which multiples instances of the DBMS
execute on multiple nodes and cooperate to provide the effect of a single
database

! There are two possible parallelization approaches
[MOH94]:
$ Processing Parallelism. A request is broken up into atomic requests

which are executed in parallel
$ Data Parallelism. The data is partitioned into subsets, which are

processed concurrently

! Real life facts:
$ Processing parallelism is limited by the number of operators involved in

the processing of requests and the dependencies between operators
$ Data parallelism offers more possibilities (partitioning a relation into

several sub-tables)
$ It is possible to combine both approaches through the parallel execution

of requests against several sub-tables

Page 7

Page 13

© RJ Chevance

Saturation Situations
! There two typical cases of saturation of

system resources by a DBMS
$ Saturation of processing resources. This situation

is called CPU bound, since system performance is
limited by processors

$ Saturation of Input/Output resources. This
situation is called I/O bound, since system
performance is limited by I/Os

! Taking into account the potential of technologies
(i.e. CPU performance is growing more quickly
than I/O performance), the « CPU bound »
situation is preferable

Page 14

© RJ Chevance

Architecture of Parallel DBMS
! There are two possible form of parallelism

in a server:
$ Inter-request parallelism
$ Intra-request parallelism

! Illustration of inter-request parallelism

. . . .

Dispatcher

° ° °
Server

Processes

Database

Page 8

Page 15

© RJ Chevance

Architecture of Parallel DBMS(2)

! Intra-request parallelism illustrating
partitioning a database [RUD98]

Sequential Execution

Table 1

Table 2

time

Step 1
Scan
4 min.

Step 2
Join

4 min.

Step 3
Sort

4 min.

Total time
12 min.

Data Partitioning

Total time
3 min.

Step 1
Scan
1 min.

Step 2
Join

1 min.

Step 3
Sort

1min.

Table 1

Table 2

Partition the data across
several systems
(here, 4 systems)

Page 16

© RJ Chevance

Architecture of Parallel DBMS(3)
! Combining data partitioning and pipelined

execution

Table 1

Table 2

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Proc. Scan

Proc. Join

Proc. S
ort

Time

time = 3 min

Completion
of the first

request

time = 1 min time = 2 min time = 4 min

Completion
of the second

request

time = 5 min

Completion
of the third

request

Page 9

Page 17

© RJ Chevance

Architecture of Parallel DBMS(4)

! Functional Models in a Share Nothing
Architecture

A...EA...E F...JF...J K...NK...N O...SO...S T...ZT...Z

Execution
of the request

Data access demand Data

a) Data Shipping

Function execution demand

A...EA...E F...JF...J K...NK...N O...SO...S T...ZT...Z

Function
Execution

Execution of
the request

(partial)

Results

b) Function Shipping

Page 18

© RJ Chevance

Data Partitioning
! Implied by Share Nothing approach
! May be used in a Share Disk approach to improve the performance

through judicious directing of requests to nodes (creating an
affinity between node and data thus improving the effects of data
caching)

! Two ways of data partitioning (based upon an attribute – a column
of a tuple- called partitioning key):
$ Vertical partitioning
$ Horizontal partitioning

$ Vertical partitioning can only be done with application design in mind
$ When a transaction updates data in more than one partition, the DBMS

must implement a two-phase commit between its concerned instances

Table

System 2System 1

Table

System 1

System 2

Vertical Partitioning Horizontal Partitioning

Page 10

Page 19

© RJ Chevance

Data Partitioning(2)
! Examples of methods of data partitioning

Round Robin
Each tuple is placed into the

next partition in sequence

1
2
3
4
5

Table

Domain
of values

Domain
Tuples are partitioned according
to the value domains of their keys

Hashing
An algorithm applied to the key

determines partition number

Page 20

© RJ Chevance

IBM DB2 UDB Enterprise Extended Edition
! A version with the Data Partioning Option is intended for

loosely coupled systems operating under Linux, Unix or
Windows (there are equivalent versions for zOS and iSeries).
This version (hereafter called DB2) is based on a share
nothing approach and function shipping

! Data partitioning in DB2

Column 1 (Partitioning key) Column 2 Column 3

xxxxx yyyyy zzzz

Function result 0 1 2 3 4 5 6 7 8 9 10 11
Assigned node 1 2 3 4 5 6 1 2 3 4 5 6

. . . .

. . . .

Hash Function

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Page 11

Page 21

© RJ Chevance

IBM DB2(2)
! Function Shipping in DB2

Node 1 Node 2 Node 3

E E E

C

E E E EEE

Client applications

C Coordinator Task E Slave Task

Page 22

© RJ Chevance

IBM DB2(3)
! Join Strategies in DB2

Coordinator
Task

Slave
Tasks

Join

Scan
Scan

Table 1

Table 2

Local Join

Slave
Tasks 1

Scan

Table 1 Table 2

Scan

Join

Directed
or

Diffused

Directed or Diffuse Join

Coordinator
Task

Slave
Tasks 2

Scan Scan

Table 1 Table 2

Join

Distributed Join

Scan

Coordinator
Task

Slave
Tasks 3

Slave
Tasks 2

Slave
Tasks 1

Page 12

Page 23

© RJ Chevance

IBM DB2(4)

! DB2 provides a number of facilities such
as:

$ Administration tools
$ A single system image (as far as the

database is concerned)
$ A database loading utility which can operate

in parallel
$ Parallel backup and restore (in parallel with

production use)
$ Ability to restructure the database

concurrently with production use
$ High-availability functionality

Page 24

© RJ Chevance

Oracle Real Application Cluster
! Oracle Real Application Cluster (RAC for

short) is based upon the Shared Disks
philosophy

! Illustration of Oracle terminology
Single instance Multiple instances/Multiple DB’s

Exclusive Mode

Oracle
instance

Open DBNode Node

Oracle
instance

Open DB

Oracle
instance

Open DB

ORACLE Parallel Server

Oracle
instance

Oracle
instance

Node 1 Node 2

Open DB

Shared Mode

Page 13

Page 25

© RJ Chevance

Oracle Real Application Cluster(2)
! General Structure of an Oracle Instance

Database
Cache

System Global Area (SGA)

Dedicated
server

Redo
Log

User

Shared area

Shared
SQL

Zones

User session
and cursor

state for MTS

PGA
Stack
User

session
Current

state

PGA

StackDispatcher

Multithreaded Server

Background process

UserUser

PGA

Stack

Page 26

© RJ Chevance

Oracle Real Application Cluster(3)
! Structure of a Multithreaded Oracle

Instance

Redo
Log

Request
queue

Response
Queue

System Global Area

Dispatcher Dispatcher LSNR
Dedicated

Server

User

Database
cache

Shared
Area

Background process

Shared
server

User User User User User

Page 14

Page 27

© RJ Chevance

Oracle Real Application Cluster(4)
! Oracle Background Processes

System Global Area (SGA)

S000
Shared
Server

process

reco pmon smon

ckpt

dbwr lgwr

arch

Database files

Redo Log files

lck0

Backup/archiving
peripherals

User process

d000

Database
Cache

Redo
log

Control files

The following pair of techniques are
used to improve transaction
processing performance:

•• Fast Commit/Deferred Write. During
a transaction commit, Oracle only
updates the log. The database proper
is updated only when modified
blocks are written back to disk.

•• Group Commit. Log updates for
several transactions are gathered up
so that recording several commits
requires just one log update. In other
words, commit is delayed until
enough have been encountered, or
until a specified time quantum has
expired; the log file is then updated
with just one I/O operation.

Page 28

© RJ Chevance

Oracle Real Application Cluster(5)
! Architecture of RAC (Oracle 9i)

Instance A Instance B

Shared
Servers

SGA

pmon

smon

DLM CGS

Parallel Server API

CM I/O IPC

Shared
Servers

SGA

pmon

smon

DLMCGS

Parallel Server API

CMI/OIPC

lgwr dbwrarch lgwrdbwr arch

Node 1 Node 2

Management of the parallel environment is provided by the two principal components of RAC: PCM
(Parallel Cache Management) and CGS (Cluster Group Services).
PCM uses DLM (Distributed Lock Management) to coordinate access to resources required by the
instances; it is also used to coordinate access to shared resources such as the data dictionaries
(metadata), journals and so on. CGS interworks with the Cluster Manager to supervise cluster state.

Page 15

Page 29

© RJ Chevance

Oracle Real Application Cluster(6)
! From a conceptual point of view, RAC implements a cache

coherence protocol. The basic idea behind the protocol is
that only one instance at a time can modify a storage block.
Thus, a block being modified by one instance and needed
by another instance will be communicated to the second
instance . In RAC, the name ping is used to denote this
operation.

! A lock protects one or more storage blocks. Intuitively, the
more blocks protected by one lock, the more likely it is that
a request for a block will require a ping. Since this
operation means that all the modified blocks covered by
the lock will be communicated to the requesting instance -
and not just the wanted block - it is said to result in a false
ping. Thus, a balance must be struck between the cost of
managing many locks and the cost of having too many
false pings.

! The optimization of RAC was based upon the idea of
reducing the cost of managing cache coherency (the term
cache synchronization is also used). This is the key
objective of the Cache Fusion concept.

Page 30

© RJ Chevance

Oracle Real Application Cluster(7)
! Cache Fusion Concept

Database
Logs

Instance A Instance B

lck0

DLM

Shared
Servers

lgwr

lck0

DLM

dbwr

Shared
Servers

SGA SGACache Fusion

dbwr

Logs

lgwr

Node 1 Node 2

Page 16

Page 31

© RJ Chevance

Oracle Real Application Cluster(8)

! Four cases are handled to reduce overall ping cost:
$ Read/Read. Instance A wishes to read, on behalf of a

user, a storage block recently read by Instance B and
which is in B’s SGA;

$ Read/Write. Instance A wishes to read, on behalf of a
user, a storage block recently written by Instance B and
which is in B’s SGA;

$ Write/Read. Instance A wishes to write, on behalf of a
user, a storage block recently read by Instance B and
which is in B’s SGA;

$ Write/Write. Instance A wishes to write, on behalf of a
user, a storage block recently written by Instance B and
which is in B’s SGA.

Page 32

© RJ Chevance

Oracle Real Application Cluster(9)
! The Read/Read case does not require any coordination

between the instances - instance A may simply read the
storage blocks from disk into its own SGA, from B’s SGA
(i.e. using the interconnection network) or from a disk read
operation (the choice depends on the respective
performance of the interconnect and the disk read).

! In the Read/Write and Write/Write cases, a coordination
between the instances is necessary to ensure consistency
(read/write) or integrity (write/write). In either of these
situations, the current possessor of an up to date version
of the data sends it to the requester over the interconnect
network. This save the two disk I/Os implied by a ping. RAC
implements appropriate redundancies to ensure
recoverability in the event of a failure.

! In the case of Write/Read, the instance that last read the
data block (and has a copy in its SGA) sends it over the
interconnect network to the instance that wants to modify
the data. This avoids a read access to the disk.

Page 17

Page 33

© RJ Chevance

Oracle Real Application Cluster(10)
! RAC Locking Concepts

$ Two types of locks:
% Non-PCM Locks (or nonparallel locks): Transaction Locks,

Table Locks, System Change Number, Library Cache Locks,
Data Dictionary Cache Locks, Data Base Mount Lock

% Locks used to manage the parallel cache (or parallel locks)

Parallel lock space

Blockp Status tuple
tuple

Blockq Status tuple
tuple

Blockr Status tuple
tuple

Instancei Instancej

Blocks Status tuple
tuple

Non-parallel lock space

Transactionk Transactionm

Page 34

© RJ Chevance

Oracle Real Application Cluster(11)
! RAC Recovery Logic

1. Several OPS instances are active on a number of
nodes

2. A node fails, its failure is detected, and connections
between the clients of that node and its instance are
migrated to instances on surviving nodes

3. The Cluster Manager (CM) and the Cluster Group
Services (CGS) reconfigure themselves to eliminate
the failing node. During this process, new service
requests from clients are suspended, as are requests
in the process of being handled (until the recovery is
completed).

4. The lock database is reconstituted, with the database
and the locks associated with resources being
redistributed to the surviving nodes.

5. Cache recovery and use exploitation of the logs are
done

6. Access to the database is once more permitted while
recovery continues with Fast-Start Rollback.

Page 18

Page 35

© RJ Chevance

DBMS Architecture Comparisons

High

Low

No updates Many updatesType of operations

D
eg

re
e

of
 d

at
a

pa
rt

iti
on

in
g

D
ec

is
io

n
Su

pp
or

t

Departmental
Applications

Transaction processing
with partitioning

OLTP -
Transaction processing
with random changes to

a large database

Good scalabilityGood scalability

Scalability not Scalability not
guaranteedguaranteed

Page 36

© RJ Chevance

DBMS Architecture Comparisons(2)

. Intra-request
parallelism provides
speedup
. Requests may easily
be optimized

. Limited maximum
number of processors

. Limited maximum
number of processors

. Not failure-resistant . Not failure-resistant
. Intra-request
parallelism provides
speedup

. Intra-request
parallelism provides
speedup

. Intra-request
parallelism provides
scaleup

. Data partitioning not
needed

. Data partitioning not
needed

. Data partition ing not
needed

. Disk interconnect is a
potential bottleneck

. Disk interconnect is a
potential bottleneck

. Data partitioning
needed for performance
increase

. Data partitioning
needed for
performance increase

. Difficult to optimize
requests

. Difficult to optimize
requests

Advantages
. Intra-request
parallelism provides
speedup

. Inter-request
parallelism provides
scaleup

. Efficiently of
transaction processing

. Inter-request
parallelism provides
scaleup

. Data partition ing
needed for performance
increase

. Partitioning makes
applications difficult to
design

. Difficult to optimize
requests

. Controlling data
distribution makes
database
administration difficult
. Difficult to optimize
requests

. Partitioning makes
applications difficult to
design

Disadvantages

Share Nothing

Shared Disks

Departmental
Transaction
Processing

. Difficult to optimize
requests

. Efficiency of
transaction processing

Advantages

. Disk interconnect is a
potential bottleneck

. Partitioning makes
applications difficult to
design

Disadvantages

Disadvantages
. Limited maxi mum
number of processors

Not applicable

Share Everything

Transaction
Processing

Advantages

. Inter-request
parallelism provides
scale up

Not applicable . Efficiency (scale up)

Decision Support Partitioned
Transaction
Processing

Page 19

Page 37

© RJ Chevance

References
[DEW92] David DeWitt, Jim Gray, «Parallel Data Base Systems: The Future of High Performance

Data Base Systems»
CACM, June 1992, Vol. 35, No 6, pp. 85-98

[MOH94] C. Mohan, H. Pirahesh, W. G. Tang, Y. Wang, «Parallelism in Relational Database
Management Systems»,

IBM Systems Journal, Vol. 33, No 2, 1994, pp. 349-371.
[RUD98] Ken Rudin, «When Parallel Lines Meet»,

Byte, May 1998, pp. 81-88.

Product documentation available from IBM and Oracle

