

· · · ·	Share Everything	Shared Disks	Share Nothing
	Simplicity for both inter-request and intra-	Good availability	Good availability
Advantages	Good use of resources	Good scalability (100 or more processors)	Extremely good scalability (several hundred proces sors
	Natural load-balancing	Low cost because of re-use of standard components	Low cost because of re-use of standard components
	Efficient interprocess com munication through coher ent shared memory	Good load balancing (data which is heavily shared can be replicated)	
	Solution rapidly becoming commoditized at the low end		
Disadvantages	Difficult to ensure system availability	Interaction between nodes needed to synchronize	Difficulties in load-balanc ing
	Limited scalability (upper limit of a few tens	Saturation of the intercon nect network because of	Difficult to administer and optimize because of data
	or pro cessors)	node-cusk trainc Cost of maintaining coher ence across multiple copies of the data (if replication is used) especially if there are frequent updates.	partitioning System performance strongly dependent on inter connec characteristics
			Cost of parallelizing requests, even for simple requests
			Cost of maintaining coher ence across multiple copies of the data (if replication is used) especially if there are frequent updates

Architect principal	tural choic DBMSes	es support	ed by the
Model of architectu	re Share Everything (SMP)	Shared Disks (some clusters)	Share Nothing(some
	IBM DB2	IBM DB2 for OS/390	IBM DB2 for Linux, Unix
	Informix	Oracle Real Application	Informix
DBMS	Microsoft SQL Server	Cluster	Microsoft SQL Server
	Oracle Teradata (NCR) Sybase		Teradata (NCR)
Note: Informix has beer	n bought by IBM in 2001		

	Problems of Parallel DBMS
Pa	rallel versus Distributed DBMS
	A parallel DBMS seeks to make maximum use of the resources of a system through the use of parallelism, while a distributed DBMS aims to make a collection of databases (whether homogeneous or not) supported by different systems look like a single coherent database.
	Some DBMS versions said to be tuned for parallel architectures are simply distributed databases, in which multiples instances of the DBMS execute on multiple nodes and cooperate to provide the effect of a single database
■ Th [M	ere are two possible parallelization approaches OH94]:
	Processing Parallelism. A request is broken up into atomic requests which are executed in parallel
	Data Parallelism. The data is partitioned into subsets, which are processed concurrently
Re Re	al life facts:
	Processing parallelism is limited by the number of operators involved in the processing of requests and the dependencies between operators
	Data parallelism offers more possibilities (partitioning a relation into several sub-tables)
	·

			Decision Support	Departmental Transaction Processing	Partitioned Transaction Processing	Transaction Processing
Share	Advanta Everything	ges	. Intra-request parallelism provides speedup . Requests may easily be optimized	. Inter-request parallelism provides scale up	Not applicable	. Efficiency (scale up)
	Disadva	ntages	. Limited maxi mum number of processors	. Limited maximum number of processors . Not failure-resistant	Not applicable	. Limited maximum number of processors . Not failure-resistant
	Advanta	ges	. Intra-request parallelism provides speedup . Data partitioning not needed	. Intra-request parallelism provides speedup . Data partitioning not needed	. Efficiency of transaction processing	. Intra-request parallelism provides scaleup . Data partition ing no needed
Shared	l Disks Disadva	ntages	Disk interconnect is a potential bottleneck Data partitioning needed for performance increase Difficult to optimize requests	. Disk interconnect is a potential bottleneck	. Partitioning makes applications difficult to design	. Disk interconnect is . potential bottleneck . Data partitioning needed for performance increase . Difficult to optimize
	Advanta	ges	. Intra-request parallelism provides speedup	. Inter-request parallelism provides scaleup	. Efficiently of transaction processing	. Inter-request parallelism provides scaleup
Share Nothing	Nothing Disadva	ntages	Data partition ing needed for performance increase Difficult to optimize requests	. Difficult to optimize requests	. Partitioning makes applications difficult to design	. Partitioning makes applications difficult to design . Controlling data distribution makes database administration difficul . Difficult to optimize requests

		References
	[DEW92]	David DeWitt, Jim Gray, «Parallel Data Base Systems: The Future of High Performance Data Base Systems»
		<i>CACM</i> , June 1992, Vol. 35, № 6, pp. 85-98
	[MOH94]	C. Mohan, H. Pirahesh, W. G. Tang, Y. Wang, «Parallelism in Relational Database Management Systems»,
		<i>IBM Systems Journal</i> , Vol. 33, № 2, 1994, pp. 349-371.
	[RUD98]	Ken Rudin, «When Parallel Lines Meet»,
		<i>Byte</i> , May 1998, pp. 81-88.
Poge 2	Product do	ocumentation available from IBM and Oracle
Page 37	7	

